G Protein *y* **Subunits Coimmunoprecipitated with Antibodies against** *a* **Subunits: Identification of Major Isoforms in Cultured Cells by Silver Stain and Immunoblotting with Conventional Transfer Procedure¹**

Hiroshi Ueda,* Rika Morishita,* Ritsuko Katoh-Semba,' Kanefusa Kato,* and Tomiko Asano*²

Departments of 'Biochemistry and iPerinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392

Received for publication, July 10, 1998

The *0y* **subunits of G proteins were coimmunoprecipitated with antibodies against various** *a* **subunits, and analyzed by silver stain and immunoblotting with conventional transfer procedure and membrane-blocking buffer containing 2% BSA. Multiple isoforms of** *y* **were coimmunoprecipitated with no significant difference in form or ratio among the antibodies** against α subunits used, suggesting antibodies against any α subunit could coimmuno**precipitate all forms of** γ **. Therefore, this method was applicable to analyze** γ subunits in **various cells, especially to clarify what forms of** *y* **subunits are major components. The major isoforms were:** γ_5 in C6, NG108-15, HeLa, HEK293, and F9 cells; γ_{12} in Swiss 3T3 and BRL-3A cells; and γ_3 in PC12 cells. In addition to most γ subunits identified, unidentified **7 subunits were present in PC12, NG108-15, and BRL-3A cells. Furthermore, the method was applied to examine changes of isoforms of** *y* **during differentiation of HL-60 cells. Undifferentiated cells mainly contained** *y^f ,* **but retinoic acid treatment of cells replaced** most γ_5 with γ_2 . Thus, this method is useful to determine the major isoforms which seem to **be the more important in cells.**

Key words: differentiation, G protein *y* **subunit, HL-60 cells, immunoblotting, immunoprecipitation.**

Heterotrimeric G proteins, which are involved in signal transduction from cell-surface receptors to intracellular effectors, are composed of α , β , and γ subunits, the latter two being tightly associated under physiological conditions *(1, 2).* Receptor stimulation promotes the dissociation of G protein into a separate α subunit and a $\beta\gamma$ dimer. This suggests simultaneous regulation of multiple cellular responses by G proteins, since both components independently regulate intracellular effectors *(1, 2).*

Analyses of purified proteins and cloned cDNAs have revealed the existence of multiple forms of β and γ in addition to many isoforms of α . At the amino acid level, 5 mammalian β subunits exhibit strong conservation (3), while 11 mammalian γ subunits show considerable divergence (4). Consequently, functional differences among various forms of $\beta\gamma$ complex have been attributed to the γ rather than β (5-7). In their tissue distribution, γ subunits show more variation than β subunits. Among the 5 isoforms of β (β_1 - β_2), β_1 - β_4 subunits are widely distributed with the

© 1998 by The Japanese Biochemical Society.

exception of a brain specific isoform of $\beta_{\rm s}$ (3). By contrast, y_1 and y_2 are specifically expressed in retinal rods and cones, respectively $(8-10)$. The γ_8 subunit is expressed only in olfactory and vomeronasal neuroepithelia *(11),* whereas γ_3 and γ_4 are localized only in the brain (12-17). By contrast, γ_2 , γ_5 , γ_7 , γ_{10} , γ_{11} , and γ_{12} are distributed in a variety of tissues *(4, 12-16).*

To determine what forms of γ subunit are present in tissues or cells, extracts are usually examined by immunoblotting. Since most cells and tissues contain multiple forms of γ subunit, the major isoforms seem to be the more important. However, because reactivities of antibodies against γ subunits are considerably different, immunoblotting does not clarify what forms are major components without the use of purified γ subunits as standards, which are not always available. In addition, we cannot rule out the possibility of the existence of novel γ subunits as major isoforms. In the present study, $\beta\gamma$ subunits were coimmunoprecipitated from extracts of cells with antibodies against various α subunits, because antibodies against β subunit were not useful for immunoprecipitation. Analyses of immunoprecipitates by silver stain and immunoblotting indicated coprecipitation of all the γ subunits with the antibodies against α subunits. Using this method, we showed the major γ subunit in various cells and differentiated HL-60 cells.

With respect to detection of γ subunits by immunoblotting, it has been reported that the conventional transfer procedure was not successful, and a high temperature

^{&#}x27; This work was supported in part by a Grant-in-Aid for Scientific Research (No. 08468201) from the Ministry of Education, Science, Sports and Culture of Japan.

^{&#}x27;To whom correspondence should be addressed. Tel: + 81-568-88- 0811, Fax: +81-568-88-0829, E-mail: toasano@inst-hsc.pref.aichi. ip

Abbreviations: DMEM, Dulbecco's modified Eagle's medium; DMSO, dimethyl sulfoxide; FBS, fetal bovine serum; G protein, heterotrimeric guanine nucleotide-binding protein; RA, retinoic acid.

transfer procedure enhanced the sensitivity of immunodetection (18). However, we have been able to detect γ subunits with high sensitivity by conventional transfer methods *(4, 15).* Therefore, we show here sensitive detection of γ subunits by immunoblotting with membraneblocking buffer containing BSA instead of nonfat dry milk.

MATERIALS AND METHODS

*Antibodies—*The peptide KNNLKDCGLF, corresponding to residues Lys³⁴⁵-Phe³⁵⁴ of $G_{11/2}\alpha$, was conjugated to keyhole limpet hemocyanin with glutaraldehyde and injected into rabbits. Antisera were purified using an antigencoupled Sepharose column, and purified antibodies were referred to as antibodies against $G_{11/2}\alpha$. Antibodies against $G_0 \alpha$ and β subunits were previously generated with purified proteins (19, 20). The antibodies against $G_{q/11} \alpha$ and $G_s \alpha$ ($G_{\alpha/2}(\alpha)$ were purchased from Santa Cruz Biotechnology. The peptide N -acetyl-SATNNIAQARKC, corresponding to residues Ser^2 -Lys¹² of γ , appended with cysteine for coupling purposes, was synthesized. Antisera against $\gamma_{7(N)}$ were raised in rabbits by the injection of this peptide conjugated to keyhole limpet hemocyanin and purified using an antigen-coupled Sepharose column. Antibodies against $\gamma_{7(N)}$ reacted mainly with γ_7 but also weakly with γ_2 , γ_3 , and γ_{12} (data not shown). Antibodies against other *y* subunits were previously generated with the individual peptides corresponding to N- or C-terminal amino acid sequences *(4, 15, 21).*

Cell Culture and Differentiation Induction—Mouse Swiss 3T3 fibroblasts were cultured at 37'C in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% calf serum. Mouse teratocarcinoma F9, obtained from Health Science Research Resource Bank, rat C6 glioma, human leukemia HL-60, human embryonal kidney (HEK) 293, and HeLa cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS), and rat PC12 pheochromocytoma cells were cultured in DMEM supplemented with 5% FBS and 10% horse serum. Mouse neuroblas $tomaxrat$ glioma hybrid NG108-15 cells were grown in DMEM containing 5% FBS and hypoxanthine/aminopterin/thymidine, and rat liver BRL-3A cells were cultured in Ham's F12 medium with 10% FBS. HL-60 cells were differentiated into granulocytes by treatment for 5 days with 1.3% dimethyl sulfoxide (DMSO), 1 mM all-trans retinoic acid (RA), or 0.1 mM dibutyryl cAMP. The percentage of differentiated cells was monitored by nitro-blue tetrazolium reduction for granulocytes *(22, 23).* Preparations in which more than 90% of cells were differentiated were used for experiments.

Immunoprecipitation—All cells were washed with cold phosphate-buffered saline and lysed in Buffer A (50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 100 mM NaCl, 1% Triton X-100, 0.5% sodium cholate, 0.2 mM phenylmethylsulfonyl fluoride, 1μ g/ml trypsin inhibitor). The cell lysates were centrifuged at 4°C at $100,000 \times g$ for 20 min, and supernatant fractions (cell extracts) were used for immunoprecipitation. The cerebral cortex of rat was homogenized in 9 volumes of buffer A, centrifuged at 4'C at $100,000 \times g$ for 1 h, and the supernatant thus obtained was referred to as the brain extract. For immunoprecipitation, cell and brain extracts were incubated with antibodies against various α subunits at 4°C for 1 h, and the immunocomplexes were recovered by further incubation with 20 μ ¹ of Protein A-Sepharose (1 mg protein A/ml of gel) for 1 h. The immunoprecipitates were washed three times with buffer containing 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 100 mM NaCl, 0.2 mM PMSF, and 1μ g/ml trypsin inhibitor, and an aliquot was subjected to SDS-PAGE.

*SDS-PAGE and Immunoblotting—*Tricine/SDS-PAGE (16.5% acrylamide) was performed by the method of Schägger and von Jagow (24), and SDS-PAGE was conducted according to the method of Laemmli *(25).* Proteins were transferred electrophoretically from each SDS-polyacrylamide gel to a nitrocellulose sheet (Protran BA85, Schleicher & Schuell) in ice-cold transfer buffer containing 25 mM Tris-192 mM glycine (pH 8.3) and 20% (v/v) methanol *(26)* at 15 V/cm for 2 h. The nitrocellulose sheet was incubated in blocking buffer [10 mM sodium phosphate buffer, pH7.0, 100 mM NaCl, 2% BSA (Fr. V, Bayer), 0.5% protease-treated gelatin, and 0.1% NaN₃] for 2 h at room temperature, then with primary antibodies in TBS (20 mM Tris-HCl, pH 7.5, 0.15 M NaCl, and 0.01% Nonidet P-40) for 1-2 h *(15).* The sheet was washed with TBS, then incubated with peroxidase-conjugated antibodies raised in goat against rabbit IgG in TBS for 1 h. The washed sheet was soaked in chemiluminescence reagent (Renaissance; DuPont NEN) for 1 min, then exposed to RX-H film (Fuji) for 0.5-2 min *(15).*

RESULTS

For detection of γ subunits by immunoblotting, we used conventional transfer procedures at low temperature and blocking buffer containing 2% BSA *(4, 15). As* shown in Fig. 1, all *y* subunits tested could be sensitively detected by this method. However, these *y* subunits were hardly detectable when the same nitrocellulose blots were incubated in the blocking buffer containing 5% nonfat dry milk, which was frequently used for detection of γ subunits (18) (Fig. 1). In contrast, β subunit could be detected by use of either blocking buffer, indicating nonfat milk was inappropriate for detection of γ subunits by immunoblotting.

Fig. 1. Reactivities of various γ and β subunits by immuno**blotting after incubation with blocking buffer containing BSA or nonfat dry milk.** Purified β y, (50 ng, lane 1), β y, (10 ng, lanes 2 and 6), *0y^t* (20 ng, lane 3), *fir,* (10 ng, lane 4), and *fir,,* (10 ng, lane 5) were subjected to Tricine/SDS-PAGE (lanes 1-5) or SDS-PAGE (lane 6), then the proteins were transferred to nitrocellulose sheets. The nitrocellulose blots were incubated in blocking buffer containing 2% BSA for 2 h (upper panel) or TBS containing 5% nonfat dry milk (Difco skim milk) for 1 h (lower panel), then incubated with antibodies against γ_2 (lane 1), γ_3 (lane 2), γ_5 (lane 3), $\gamma_{\gamma(c)}$ (lane 4), γ_{12} (lane 5), or β (lane 6). Immunostaining was carried out as described in 'MATERIALS AND METHODS."

Antibodies against α subunits of $G_{11/2}$, G_o , $G_{q/11}$, and G_s specifically immunoprecipitated the respective α subunits in extracts of rat brain (data not shown). When immunoprecipitation was performed in the presence of 1% sodium cholate, *Py* subunits were not coimmunoprecipitated with α subunits, but all of the above antibodies coimmunoprecipitated $\beta\gamma$ subunits in extracts of rat brain in the presence of Triton X-100. In the combination of 1% Triton X-100 and 0.5% sodium cholate, more G proteins were solubilized than in Triton X-100 alone, and $\beta\gamma$ subunits could be coimmunoprecipitated by antibodies against α subunits. Therefore, we first examined the selectivity in α - γ subunit interactions in these conditions. Several isoforms of γ were coimmunoprecipitated with antibodies against α subunits, with no significant difference among the antibodies in the forms of γ subunits coprecipitated or their ratio (Fig. 2). Besides brain extracts, similar results were obtained from extracts of Swiss 3T3 and C6 cells with antibodies against $G_{11/2}\alpha$, $G_{q/11}\alpha$, and $G_3\alpha$ (data not shown), suggesting random association of α with $\beta\gamma$ in the tissue and cell extracts. When purified β_{γ_2} subunits were added to extracts of Swiss 3T3 cells, which did not contain a detectable amount of *y2,* the exogenous γ_2 as well as endogenous γ subunits was coimmunoprecipitated with antibodies against $G_{11/2}\alpha$, suggesting a rapid exchange of $\beta\gamma$ subunits among α subunits in extracts. It was unlikely that lack of selectivity in α - γ subunit interaction was due to the non-specific binding of large amounts of *Py* to protein A-Sepharose beads, because antibodies against *y* subunits with the protein A-Sepharose specifically immunoprecipitated the respective γ subunits from the extracts of rat brain and the cells. This approach has the advantage that antibodies against any α subunit could coimmunoprecipitate all forms of *y* subunit. To co-

Fig. 2. Coimmunoprecipitation of $\beta\gamma$ subunits in rat brain ex**tracts with antibodies against various** *a* **subunits of G proteins.** Rat brain extracts were immunoprecipitated with antibodies against $G_{11/2}$ α (lane 2), G_o α (lane 3), $G_{q/11}$ α (lane 4), and G_s α (lane 5). The immunoprecipitates and the standards (lane 1) were subjected to Tricine/SDS-PAGE for analyses of the γ subunits or SDS-PAGE for analyses of the β subunits, and immunoblotted with antibodies against various γ and β subunits. The standards (from top to bottom) were purified bovine *Py,* (10 ng), *Py,* (2 ng), *Py,* (2 ng), *Py,,* (2 ng), and βy_{12} (5 ng). Since the total amount of $\beta \gamma$ coimmunoprecipitated differed among the antibodies used, the amount of sample applied to electrophoresis was adjusted to give similar densities of bands of *p.* Because antibodies against $\gamma_{\pi c}$, which reacted with γ_1 , γ_1 , γ_2 , and γ_{12} , were used to detect γ_7 , staining of γ_2 and γ_3 as well as γ_7 was observed (middle panel). The rat y_7 and y_{12} showed slightly slower migration than bovine γ_1 and γ_{12} of standard proteins, probably due to species differences *(4).* In addition, y, often gave two bands on Tricine/SDSpolyacrylamide gels, though the reason for this is not clear *(15).*

immunoprecipitate γ subunits, antibodies against β seemed to be better than antibodies against α subunits. However, our antibodies against β did not precipitate β subunit, probably because they failed to recognize the assembled *Py,* as described by Rehm and Ploegh *(27).*

To elucidate the major forms of *y* subunit in the various types of cells, *y* subunits were coimmunoprecipitated from extracts of PC12, Swiss 3T3, and C6 cells with antibodies against α subunits that were abundant in individual cells, and the immunoprecipitates were analyzed by silver stain after Tricine/SDS-PAGE. In addition to major bands of G protein subunits, minor proteins with higher molecular weights than those of *y* subunits were coprecipitated (data not shown). Several bands of *y* were obtained from all cell extracts (Fig. 3A), and most of these were identified by immunoblotting with antibodies against *y* subunits (Fig. 3B). Antibodies against γ_2 , γ_5 , γ_6 , γ_1 , γ_1 , and γ_1 ₂ specifically reacted with the respective γ subunits, but antibodies against $\gamma_{7(C)}$ reacted at least with γ_2 , γ_3 , γ_7 , and γ_{12} . In PC12 cells, two bands were visualized by silver stain, with a dense band of γ_3 . The other band (unidentified γ , γ_x), migrated between γ_2 and γ_7 , and reacted only with antibodies against $\gamma_{7(C)}$, indicating it was a γ subunit but not γ_2 ,

Fig. 3. Analyses of *y* **subunits coimmunoprecipitated with antibodies against various** *a* **subunits from extracts of PC12, C8, and Swiss 3T3 cells.** The extract of PC12 cells was immunoprecipitated with antibodies against $G_o \alpha$, while extracts of C6 and Swiss 3T3 cells were immunoprecipitated with antibodies against $G_{11/2}\alpha$. The immunoprecipitates were subjected to Tricine/SDS-PAGE and stained with silver (A) or immunoblotted with antibodies against various γ subunits (B). In (A), immunoprecipitates with antibodies against $G_o \alpha$ from rat brain were used for standards of γ_2 , γ **_{***x***}**, and γ ^{*r*}_{*f*} (lane at the left end) and a mixture of purified $\beta\gamma$ ^{*s*} and $\beta\gamma$ ^{*t*}₁₂ (0.1 μ g each) was applied to the lane on the right. In (B), immunoblots with antibodies against γ_2 , γ_3 , γ_4 , γ_0 , γ_1 , γ_1 , and γ_{TC} are shown together with the results with silver stain obtained in (A). The names of γ subunits on the left indicate identified isoforms, with an unidentified form of *yx.*

Fig. **4. Major** *y* **subunits in various cultured cells coimmunoprecipitated with antibodies against various** *a.* Extracts of HEK293, HeLa, and F9 cells were immunoprecipitated with antibodies against $G_{1/14} \alpha$, while extracts of NG108-15 and BRL-3A cells were immunoprecipitated with antibodies against $G_0 \alpha$ and $G_{q/11} \alpha$, respectively. The immunoprecipitates were subjected to Tricine/ SDS-PAGE and stained with silver. The names of γ subunits indicate identified isoforms, with an unidentified form of γ_x .

Y3, Y&, y?, yio, *Yn,* or *y12* (Fig. 3). In C6 cells, four bands were observed by silver stain, and identified as γ_2 , γ_5 , γ_{10} , and γ_{12} by immunoblot, while Swiss 3T3 cells contained a large amount of γ_{12} and less γ_5 and γ_{10} (Fig. 3).

Using this method, the major γ subunits in other cultured cells derived from various tissues were stained by silver and identified by immunoblotting (Fig. 4). The major γ subunits in HEK293, HeLa, and BRL-3A cells were γ_5 and γ_{12} , while F9 and NG108-15 cells contained γ_2 and γ_5 as major γ subunits. In addition, an unidentified γ , whose mobility on a polyacrylamide gel and reactivity with antibodies against various γ subunits were very similar to γ ^{*x*} found in PC12 cells, was present in NG108-15 and BRL-3A cells.

To study changes of isoforms of γ during cell differentiation, HL-60 cells were treated with various reagents that induced their differentiation into granulocytes and immunoprecipitated with antibodies against $G_{11/2} \alpha$ (Fig. 5). Untreated HL-60 cells contained only γ_5 , with no other γ subunits detectable. Differentiation of HL-60 cells into granulocytes induced the expression of γ_2 (Fig. 5A), which was identified by immunoblotting (data not shown). In particular, RA treatment of cells replaced most γ_5 with γ_2 in HL-60 cells. The γ_{10} subunit was induced only by DMSO treatment. Although γ_5 and γ_7 comigrated under these conditions (Fig. 5A), immunoblotting with antibodies against γ_6 and γ_7 could distinguish them (Fig. 5, B and C). Limited amounts of *y,* were induced during differentiation by all reagents, with the highest level in cells treated with dibutyryl cAMP.

DISCUSSION

Previous studies have indicated selectivity in α - γ interaction: most showed less association between β_{γ_1} and α subunits than other $\beta\gamma$ and α subunits *in vitro* (5-7). By ion-exchange chromatography of G protein mixture from bovine brain, it was shown that isolated $G_0\alpha$ isoforms had distinct y subunit compositions *(28).* In the present study, however, selective interaction of α and γ was not observed by immunoprecipitation, probably due to the random association in each subunit during incubation of extracts. Although the selectivity in α - γ interaction could not be studied by immunoprecipitation methods, these methods were useful for analyzing the forms of γ subunits in tissues or cells.

Fig. 5. **Changes of isoforms of** *y* **subunit during differentiation of HL-60 cells induced by various agents.** The immunoprecipitates with antibodies against $G_{11/2}$ α from undifferentiated cells (lane 2) and cells treated with DMSO (lane 3), RA (lane 4), or dibutyryl cAMP (lane 5) were subjected to Tricine/SDS-PAGE and stained with silver (A), or immunoblotted with antibodies against γ ⁵₈ (B) and γ _{7(M)} (C). In (A), the standards (lane 1) were a mixture of purified $\beta\gamma_2$, $\beta\gamma_5$, and β_{γ} (0.1 μ g each), and γ_s and γ_r comigrated under these conditions. In (B) and (C), the standards (lane 1) were β_{γ_5} (5 ng) and β_{γ_7} (2.5 ng), respectively.

Major ν subunits of various cells were visualized with silver stain after immunoprecipitation of cell extracts with antibodies against α subunits, and identified by immunoblotting. In most cells tested, γ_5 and γ_{12} or γ_5 and γ_2 were major γ , while a brain-specific γ , γ_3 , was abundant only in PC12 cells. The γ_{10} subunit was also detectable by silver stain in some cell lines, but γ_1 and γ_1 were not major components in any cells. Unidentified γ_x subunits, which were not γ_2 , γ_3 , γ_5 , γ_1 , γ_{10} , γ_{11} , or γ_{12} , were present in PC12, NG108-15, and BRL-3A cells, and they seemed to be identical judging from their reactivities with antibodies against γ subunits and mobility on a Tricine/SDS-polyacrylamide gel. Although we did not examine the existence of tissue-specific γ subunits γ_1 , γ_4 , γ_8 , and γ_5 , it is unlikely that γ_x is γ_1 , γ_8 , or γ_c because of their limited localization. By contrast, it is likely that brain-specific γ_4 may exist in neuronal cells such as PC12 and NG108-15 cells, but the following observations suggest that γ_x is not γ_4 . (i) The mobility of γ_x and γ_3 on polyacrylamide gel differed considerably, while that of γ_3 and γ_4 should be very similar because of their close molecular weights, (ii) Since the C-terminal amino acid sequences of γ_2 and γ_4 corresponding to the region of γ_7 used for production of antibodies against $\gamma_{\gamma(c)}$ were identical, γ_4 should react with these antibodies as well as γ_2 . However, the reactivity of γ_x with antibodies against $\gamma_{7(C)}$ was much lower than that of γ_2 in C6 cells, in contrast to the similar densities of these two bands stained by silver (Fig. 3). Whatever the case, the amino acid sequence of γ_x must be analyzed to prove that γ_x is a novel γ subunit.

Differentiation of HL-60 cells into granulocytes by treatment for 5 days with DMSO, RA, or dibutyryl cAMP induced the expression of γ_2 and γ_7 , which did not occur in undifferentiated cells. In particular, the dominant isoform y_5 in untreated cells was replaced with y_2 in RA-treated cells. In contrast, Iiri *et al (22)* reported that DMSO treatment of HL-60 cells for 5 days did not induce the expression of γ_2 , but treatment of cells with DMSO (5 days) plus RA (during the last 24 h of treatment, DMSO/RA) or RA alone (2 days) did. The reason for the discrepancy observed in DMSO-treated cells is not clear, but may be due to the reactivity of antibodies against γ_2 : the sensitivity of their antibodies may have been too low to detect relative-

ly small amounts of *y^t .* Actually, the reactivity of our antibodies against γ_2 was lowest among antibodies against various γ subunits, and we sometimes did not detect the γ_2 subunit in the extracts. These results indicate the importance of examining γ subunits by the present methods in addition to immunoblotting.

Iiri et al. (22) reported that trimeric G₁₂ purified from DMSO/RA-treated HL-60 cells stimulated $\beta\gamma$ -sensitive phospholipase C in extracts of HL-60 cells to a much greater extent and at lower concentrations than G_{12} purified from DMSO-treated cells, suggesting that RA-induced expression of γ_2 altered the function of G_{12} . When we examined γ subunits in DMSO/RA-treated cells, more γ_2 was expressed than in DMSO-treated cells, but much less than in RA-treated cells (data not shown). Taken together with the present results, the difference in G_{12} from DMSOand DMSO/RA-treated cells seems to be the ratio of γ_2 and y_5 . However, it has also been reported that purified phospholipase *C/32* and *C/33,* which were detected in HL-60 cells, were stimulated by both β_{γ_2} and β_{γ_5} (7). It is possible that an unknown isoform of phospholipase C, which is more sensitive to β_{γ_2} , may be present in HL-60 cells.

We are grateful to Dr. Hiroshi Itoh for providing a C-terminal peptide of $G_{11/2}\alpha$.

REFERENCES

- 1. Neer, E.J. (1995) Heterotrimeric G proteins: organizers of transmembrane signals. *Cell* **80,** 249-257
- 2. Hamm, H.E. (1998) The many faces of G protein signaling. *J. BioL Chem.* **273,** 669-672
- 3. Watson, A.J., Katz, A., and Simon, M.I. (1994) A fifth member of the mammalian G-protein β -subunit family: Expression in brain and activation of the *0,* isotype of phospholipase C. *J. Biol. Chem.* **269,** 22150-22156
- 4. Morishita, R., Nakayama, H., Isobe, T., Matsuda, T., Hashimoto, Y., Okano, T., Fukada, Y., Mizuno, K., Ohno, S., Kozawa, 0., Kato, K., and Asano, T. (1995) Primary structure of a γ subunit of G protein, γ_{12} , and its phosphorylation by protein kinase C. J. *BioL Chem.* **270,** 29469-29475
- 5. Ifiiguez-Lluhi, J.A., Simon, M.I., Robishaw, J.D., and Gilman, A.G. (1992) G protein $\beta\gamma$ subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of *y. J. Biol Chem,* **267,** 23409-23417
- 6. Asano, T., Morishita, R., Matauda, T., Fukada, Y., Yoshizawa, T., and Kato, K. (1993) Purification of four forms of the $\beta\gamma$ subunit complex of G proteins containing different *y* subunits. *J. BioL Chem.* **268,** 20512-20519
- 7. Ueda, N., Ifiiguez-Lluhi, J.A., Lee, E., Smrcka, A.V., Robishaw, J.D., and Gilman, A.G. (1994) G protein *Py* subunits: Simplified purification and properties of novel isoforms. *J. BioL Chem.* **269,** 4388-4395
- 8. Hurley, J.B., Fong, H.K., Teplow, D.B., Dreyer, W.J., and Simon, M.I. (1984) Isolation and characterization of a cDNA clone for the *y* subunit of bovine retinal transducin. *Proc. NatL Acad. ScL USA* **81,** 6948-6952
- 9. Yatsunami, K., Pandya, B.V., Oprian, D.D., and Khorana, H.G. (1985) cDNA-derived amino acid sequence of the *y* subunit of GTPase from bovine rod outer segments. *Proc. Nail. Acad. ScL USA* **82,**1936-1940
- 10. Ong, O.C., Yamane, H.K., Phan, K.B., Fong, H.K., Bok, D., Lee, R.H., and Fung, B.K. (1995) Molecular cloning and characterization of the G protein *y* subunit of cone photoreceptors. *J. BioL*

Chem. **270,** 8495-8500

- 11. Ryba, N.J. and Tirindelli, R. (1995) A novel GTP-binding protein γ -subunit, $G\gamma8$, is expressed during neurogenesis in the olfactory and vomeronasal neuroepithelia. *J. BioL Chem.* **270,** 6757-6767
- 12. Gautam, N., Northup, J., Tamir, H., and Simon, M.I. (1990) G protein diversity is increased by associations with a variety of γ subunits. *Proc NatL Acad. ScL USA* **87,** 7973-7977
- 13. Cali, J.J., Balcueva, E.A., Rybalkin, I., and Robishaw, J.D. (1992) Selective tissue distribution of G protein γ subunits, including a new form of the γ subunits identified by cDNA cloning. *J. Biol. Chem,* **267,** 24023-24027
- 14. Morishita, R., Fukada, Y., Kokame, K., Yoshizawa, T., Masuda, K., Niwa, M., Kato, K., and Asano, T. (1992) Identification and isolation of common and tissue-specific geranylgeranylated γ subunits of guanine-nucleotide-binding regulatory proteins in various tissues. *Eur. J. Biochem.* **210,** 1061-1069
- 15. Asano, T., Morishita, R., Ohashi, K., Nagahama, M., Miyake, T., and Kato, K. (1995) Localization of various forms of the γ subunit of G protein in neural and nonneural tissues. *J. Neurochem.* **64,** 1267-1273
- 16. Ray, K., Kunsch, C, Bonner, L.M., and Robishaw, J.D. (1995) Isolation of cDNA clones encoding eight different human G protein γ subunits, including three novel forms designated the γ . γ_{10} , and γ_{11} subunits. *J. Biol. Chem.* 270, 21765-21771
- 17. Kalyanaraman, S., Kalyanaraman, V., and Gautam, N. (1995) A brain-specific G protein gamma subunit. *Biochem. Biophys. Res. Commun.* **216,** 126-132
- 18. Robishaw, J.D. and Balcueva, E.A. (1993) A high temperature transfer procedure for detection of G protein γ subunits by immunoblotting. *Anal. Biochem.* **208,** 283-287
- 19. Asano, T., Semba, R, Ogasawara, N., and Kato, K. (1987) Highly sensitive immunoassay for the α subunit of the GTPbinding protein Go and its regional distribution in bovine brain. *J. Neurochem.* 48, 1617-1623
- 20. Morishita, R., Kato, K., and Asano, T. (1988) Major pertussistoxin-sensitive GTP-binding protein of bovine lung. Purification, characterization and production of specific antibodies. *Eur. J. Biochem.* **174,** 87-94
- 21. Morishita, R., Ueda, H., Kato, K., and Asano, T. (1998) Identification of two forms of the γ subunit of G protein, γ_{10} and y_{11} , in bovine lung and their tissue distribution in the rat. FEBS *Lett.* **428,** 85-88
- 22. Iiri, T., Homma, Y., Ohoka, Y., Robishaw, J.D., Katada, T., and Bourne, H.R. (1995) Potentiation of Gi-mediated phospholipase C activation by retinoic acid in HL-60 cells. Possible role of G_{γ_2} . *J. BioL Chem.* **270,** 5901-5908
- 23. Qin, S. and Yamamura, H. (1997) Up-regulation of Syk activity during HL60 cell differentiation into granulocyte but not into monocyte/macrophage-lineage. *Biochem. Biophys. Res. Commun.* **236,** 697-701
- 24. Schägger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. *Anal. Biochem.* **166,** 368-379
- 25. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685
- 26. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. *USA* **76,** 4350-4354
- 27. Rehm, A. and Ploegh, H.L. (1997) Monoclonal antibodies that distinguish between free and complexed heterotrimeric G protein /? subunite. *FEBS Lett.* **402,** 277-285
- 28. Wilcox, M.D., Dingus, J., Balcueva, E.A., Mclntire, W.E., Mehta, N.D., Schey, K.L., Robishaw, J.D., and Hildebrandt, J.D. (1995) Bovine brain Go isoforms have distinct γ subunit compositions. *J. BioL Chem.* **270,** 4189-4192